
Related items loading ...
             
            
                    Section 1: Publication
                                
                Publication Type
                Thesis
                                
                Authorship
                Zhang, Yushan
                                
                Title
                Quantification of Low-Level Cyanobacteria Using A Microflow Cytometry Platform for Early Warning of Potential Cyanobacterial Blooms
                                
                Year
                2021
                                
                Publication Outlet
                
                                
                DOI
                
                                
                ISBN
                
                                
                ISSN
                
                                
                Citation
                
                    Zhang, Yushan (2021). Quantification of Low-Level Cyanobacteria Using A Microflow Cytometry Platform for Early Warning of Potential Cyanobacterial Blooms 
http://hdl.handle.net/11375/27037
                 
                                
                Abstract
                
                    Cyanobacteria, also known as blue-green algae for a long time, are the most ancient and problematic bloom-forming phylum on earth. An alert levels framework has been established by World Health Organization(WHO) to prevent the potential harmful cyanobacterial blooms. Normally, low cyanobacteria levels are found in surface water. 2000 cyanobacterial cells/mL and 100,000 cyanobacterial cells/mL are established for WHO Alert Level 1 and 2, respectively. However, eutrophication, climate change and other factors may promote the spread of cyanobacteria and increase the occurrence of harmful cyanobacterial blooms in water on a global scale. Hence, a rapid real time cyanobacteiral monitoring system is required to protect public health from the cyanotoxins produced by toxic cyanobacterial species. Current methods to control or prevent the development of harmful cyanobacterial blooms are either expensive, time consuming or not effective in the long term. The best method to control the blooms is to prevent the formation of the blooms at the very beginning. Although emerging advanced autofluorescence-based sensors, imaging flow cytometry applications, and remote sensing have been utilized for rapid real-time enumeration and classification of cyanobacteria, the need to accurately monitor low-level cyanobacterial species in water remains unsolved. Microflow cytometry has been employed as a functional cell analysis technique in past decades, and it can provide real-time, accurate results. The autofluorescence of cyanobacterial pigments can be used for determination and counting of cyanobacterial density in water. A pre-concentration system of an automated cyanobacterial concentration and recovery system (ACCRS) based on tangential flow filtration and back-flushing technique was applied to reduce the sample assay volume and increase the concentration of target cells for further cell capture and detection. In this project, a microflow cytometry platform with a microfluidic device and an automated pre-concentration system was established to monitor cyanobacteria and provide early warning alerts for potential harmful blooms. In this work, quantification of low-level cyanobacterial samples (∼ 5 cyanobacterial cells/mL) in water has been achieved by using a microflow cytometer together with a pre-concentration system (ACCRS). Meanwhile, this platform can also provide early warning alerts for potential harmful cyanobacterial blooms at least 15 days earlier before reaching WHO Alert Level 1. Results have shown that this platform can be applied for rapid determination of cyanobacteria and early warning alerts can be triggered for authorities to protect the public and the environment.
                
                                
                Plain Language Summary
                
                    
                
                 
                
                    Section 2: Additional Information
                                
    
        Program Affiliations
            
                                
    
        Project Affiliations
            
                                
    Submitters
            
                                
                Publication Stage
                N/A
                                
                Theme
                
                                
                Presentation Format
                
                                
                Additional Information
                
                    PhD, McMaster University, Cryptosporidium-oocysts-Giardia-cysts