
Related items loading ...
             
            
                    Section 1: Publication
                                
                Publication Type
                Conference Presentation
                                
                Authorship
                Pomeroy, J.W.
                                
                Title
                The Impact of Climate Change on Water Security in Western and Northern Canada
                                
                Year
                2022
                                
                Publication Outlet
                First Nations Major Projects Coalition - Water Security in a time of climate change, Webinar, October 4, 2022
                                
                DOI
                
                                
                ISBN
                
                                
                ISSN
                
                                
                Citation
                
                    Pomeroy, J.W. (2022) The Impact of Climate Change on Water Security in Western and Northern Canada, First Nations Major Projects Coalition - Water Security in a time of climate change, Webinar, October 4, 2022
                
                                
                Abstract
                
                    Temperatures near 0°C represent a critical threshold for many environmental processes and socio-economic activities. This study examines surface air temperatures (T) near 0°C (−2°C ≤ T ≤ 2°C) across much of southern Canada over a 13 year period (October 2000–September 2013). It utilized hourly data from 39 weather stations and from 4-km resolution Weather Research and Forecasting model simulations that were both a retrospective simulation as well as a pseudo-global warming simulation applicable near the end of the 21st century. Average annual occurrences of near-0°C conditions increase by a relatively small amount of 5.1% from 985 hr in the current climate to 1,035 hr within the future one. Near-0°C occurrences with precipitation vary from <5% to approximately 50% of these values. Near-0°C occurrences are sometimes higher than values of neighboring temperatures. These near-0°C peaks in temperature distributions can occur in both the current and future climate, in only one, or in neither. Only 4.3% of southern Canada is not associated with a near-0°C peak and 65.8% is associated with a near-0°C peak in both climates. It is inferred that latent heat exchanges from the melting and freezing of, for example, precipitation and the snowpack contribute significantly to some of these findings.
                
                                
                Plain Language Summary
                
                    The partitioning of precipitation between rainfall and snowfall is a crucial component of the evolution of the snowpack in mountains. Most snowpack models use the air temperature and humidity near the surface to derive the precipitation phase. However, the phase at the surface is strongly influenced by processes such as melting and refreezing of falling hydrometeors that occur above the surface. Atmospheric models simulate these processes and the corresponding phase at the surface. However, snowpack models rarely use this information. In this study, we considered two estimates of precipitation phase from an atmospheric model and tested them with a physically-based snow model over the mountains of southwestern Canada and northwestern United States. The results were compared with traditional approaches using the air temperature and humidity near the surface to derive the precipitation phase. Our results showed that the precipitation phase associated with the snow level obtained from the atmospheric model improved snowfall estimate and snowpack prediction compared to the traditional approaches. In contrast, the cloud/precipitation scheme of the atmospheric model decreased performance in phase estimate and snow simulations due to missing physical processes. Our study highlights that snowpack predictions in the mountains can be improved if valuable information is obtained from atmospheric models.
                
                 
                
                    Section 2: Additional Information
                                
    
        Program Affiliations
            
                                
    
        Project Affiliations
            
                                
    Submitters
            
                                
                Publication Stage
                N/A
                                
                Theme
                
                                
                Presentation Format
                
                                
                Additional Information
                
                    SAJESS, Refereed Publications