Related items loading ...
Section 1: Publication
Publication Type
Thesis
Authorship
Gaebler, Heather
Title
The Design and Characterization of Gold Nanoclusters as Elementary Building Blocks
Year
2023
Publication Outlet
Scholars Commons Laurier - Theses and Dissertations
DOI
ISBN
ISSN
Citation
Gaebler, Heather (2023) The Design and Characterization of Gold Nanoclusters as Elementary Building Blocks, Scholars Commons Laurier - Theses and Dissertations,
https://scholars.wlu.ca/etd/2564
Abstract
Gold nanoclusters with diameters in the quantum size regime (< ~2 nm) are promising building blocks for the design of novel nanomaterials as they exhibit unique size-dependent properties that can be altered and fine-tuned. The research outlined in this PhD thesis employs density functional theory to construct and analyze small ligand-protected cage and rod-shaped nanoclusters. Chapter 2 reports stable halide-protected gold nanocages that were engineered to have a closed-shell valence electron count of 18. This study finds that nanocages comprised of 19 and 20 gold atoms can be converted into stable magic number species containing 18 valence electrons by modifying their charged states via adsorption of halide ligands to the cage’s surface. Chapter 3 reports stable ligand-protected gold nanoclusters with a tetrahedral Au4 core that were engineered to have a closed-shell valence electron count of 2. This study investigates the structural and electronic effects of halide and alkoxy ligands on the tetrahedral nanocluster and concludes that the results support the broader conclusion that it’s possible to fine-tune the stability and electronic properties of small gold nanoclusters using appropriate ligands. Chapter 4 reports stable gold nanorods that have diameters in the quantum regime that were constructed from elementary building blocks that contain “halide-staples”. This study presents different orientations of the “halide-staple” motifs on gold nanorods with aspect ratios less than 5. This PhD thesis serves to highlight the versatility of halide ligands and the ability to engineer small gold clusters with desired properties.
Plain Language Summary