Model Development for Drought-Tolerant Groundwater Management in the Prairies

Masaki Hayashi
Dept. of Geoscience, Univ. of Calgary

Water Balance: Basis of GW Management

Recharge - Discharge = Storage change (groundwater level ↑↓)

Water Level in Undisturbed Prairie Aquifers Data from Sask. Obs. Well Network

Summary of Pumping Effects

Alberta Environment Monitoring Wells

Shallow observation wells in ABWater level changes during 1965-2006

Groundwater Model Coupled with Soil Water Balance Model

Figure from: www.dhisoftware.com

Snowmelt Runoff Fills Depressions West Nose Creek watershed near Calgary

Typical Climate of the Prairies

Precip. (P) = 300-500 mm yr⁻¹ Evaporation (E), potential = 700-800 mm yr⁻¹ Snowmelt (S) \rightarrow additional water input

Versatile Soil Moisture Budget (VSMB)

Used by Alberta Agriculture and Agriculture Canada

- Potential E by Priestley-Taylor
- $E = E_{pot} \times drying function$
- Crop stages by degree-day
- Gravity drainage of soil water to field capacity
- Soil temperature does not consider freezing
- Snowmelt runoff by a simple rational method

Model Testing for Perennial GrassSpy Hill Farm – West Nose Creek watershed

Eddy flux measurement.

Uncertainty estimates based on energy balance.

Current operational VSMB.

Model Testing for Perennial GrassSpy Hill Farm – West Nose Creek watershed

Eddy flux measurement.

Uncertainty estimates based on energy balance.

Current operational VSMB.

Modification: radiation, crop stage, soil depth, etc.

Evaporation Flux: Landuse Comparison

Same instruments, only 10 km away

Evaporation Flux: Landuse Comparison

Same instruments, only 10 km away

4/1 4/21 5/11 5/31 6/20 7/10 7/30 8/19 9/8 9/28 10/18

MD of Rocky View Monitoring Network Observation by Well Owners

Water Level in Selected Monitoring Wells Jan. 2005 – Jan. 2010 Elevation (m) above mean sea level

Summary

Sustainable groundwater management must be watershed-based; recharge-storage-discharge.

Integrated hydrological model will provide an effective tool, when combined with a high-density monitoring well network.

Acknowledgement

People: John Jackson, Rui Chen, Ligang Xu, Jaclyn Schmidt, Lisa Grieef, Nathan Green, Karen Miller, Kate Forbes, Matt Wilkinson, Ralph Wright,

Funding: Alberta Environment, Agriculture and Agri-Food Canada, DRI Network, Royal Bank of Canada, Environment Canada Science Horizons Program, ...

Logistical Support: MD of Rocky View