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Abstract. Daily historical snowfall data were analysed with
the objective of determining the stability of their variabil-
ity at short temporal scales. The data are weakly multi-
fractal over periods shorter than one month, which controls
their scaling properties and which can be used to statisti-
cally downscale monthly data to shorter-duration values. Al-
though the daily snowfall values appear to be stationary, their
multifractality displays much temporal variability, with most
sites showing statistically-significant trends. Through use of
a physically-based hydrological model, it is demonstrated
that the variability of the multiscaling of snowfall can af-
fect the timing and quantity of snow accumulation in catch-
ments where the snowpacks are subject to wind redistribu-
tion. Therefore trends in scaling, based on multifractal char-
acteristics, should be taken into account when downscaling
climate model scenario outputs.

1 Introduction

The Canadian prairies are a cold, semi-arid region prone
to prolonged droughts. Consequently, the potential effects
of climate change on water resources are of great interest.
Prairie streamflow is dominated by snowmelt runoff and the
source snowfalls are subject to wind redistribution by blow-
ing snow which transforms them into highly variable, re-
distributed snowcovers (Shook and Gray, 1997) and sub-
jects them to substantial sublimation loss (Pomeroy et al.,
1993; Pomeroy and Gray, 1995; Fang and Pomeroy, 2008).
Predicting future streamflows therefore requires prediction
of future snow accumulation and redistribution. Although
physically-based hydrological models that incorporate blow-
ing snow processes are required to understand the effects of
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climate change on prairie hydrology, these models generally
need input data such as precipitation, wind speed, air tem-
perature and humidity at hourly temporal resolutions which
are coarser than can be simulated by climate models (Wilby
and Wigley, 1997) and some form of temporal downscaling
is needed.

The distribution of precipitation in space-time has long
been known to display scaling, where the statistical prop-
erties of the distribution can be related over some (large)
range of scales. For example, a simple scaling law can re-
late world-wide extreme precipitation to the time scale over
ranges spanning from minutes to years (Galmarini et al.,
2005). Data sets displaying scaling may be either monofrac-
tal or multifractal in their distribution, depending on whether
or not their scaling behaviour can be characterised by a single
fractal dimension (Lovejoy and Schertzer, 2006).

Precipitation can be modelled as being multifractal in both
time and space (Lovejoy and Schertzer, 2006; Olsson, 1995).
Molnar and Burlando(2008) found differences in the multi-
scaling of winter and summer precipitation in Switzerland,
with the summer precipitation showing strong multifractality
and the winter precipitation being close to being monofrac-
tal. By statistically reproducing the observed multifractal-
ity, precipitation has been statistically downscaled to shorter
time scales, while conserving observed scaling behaviours
(Gaume et al., 2007; Seuront et al., 1999).

Statistical downscaling methods require the existence of
stationarity in the relationships between predictor and pre-
dictand variables (Fowler et al., 2007). In the case of multi-
fractal downscaling, the requirement is for stationarity in the
degree of multifractality over time. Therefore, the objectives
of this research are to determine:

– the existence of multiscaling in the temporal distribu-
tions of prairie snowfall,

– the existence of temporal trends in the multiscaling
which will affect downscaling of prairie snowfall, and
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Fig. 1. Location of the study sites in Western Canada. The prairie
ecoregion in Canada is outlined.

– the effect(s) of any temporal trends in snowfall multi-
scaling on prairie hydrology caused by changes in the tem-
poral frequency distribution of prairie snow accumulation.

2 Selection of data

Measurements of snowfall are highly influenced by wind in-
duced undercatchGoodison(1978). Of equal importance for
these analyses, the introduction of Nipher wind shields in
Canadian use during the winter of 1960–1961 is known to
have introduced a discontinuity in snowfall data (Yang et al.,
1999). To remove the influence of wind speed and shield-
ing on the snowfall data, rehabilitated snowfall data were
obtained from the Historical Adjusted Climate Database for
Canada. These values have been adjusted for the effects of
wind as described by (Mekis and Hogg, 1999).

Daily snowfall data for Calgary, Medicine Hat, Saskatoon,
Regina, Indian Head and Brandon were selected because
they were widely dispersed throughout the prairies, had data
preceding the 20th century, and the data collection sites were
not moved during the period of record. The analysed records
span the years 1895–2003, with the exception of the Regina
data which begin in 1898. The locations of the six sites on
the Canadian prairies are shown in Fig.1.

All analyses were performed using the open source statis-
tical program R, which is described byIhaka and Gentleman
(1996). The program may be downloaded atwww.r-project.
org.

3 Scaling analyses

The presence of scaling in a time series is shown by the
power spectrum of the data, which will scale according to
the relationship (Davis et al., 1994)
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Fig. 2. Simple power spectrum (no windowing used) of Brandon
daily snowfalls. The best-fit line corresponds to Eq. (1), for wave-
lengths greater than 0.032.

E(k) ∝ k−β , (1)

where:
E(k) = power spectrum,
k = wave number,
β=constant.

The value ofβ indicates the behaviour of the underlying
time series. Ifβ=0, then the time series is entirely random.
If β <1, then the time series is stationary. Ifβ >1 then the
time series is non-stationary (Davis et al., 1994).

For periods shorter than one month, i.e. for wavelengths
greater than 1/31=0.032, scaling behaviour (β >0) was ob-
served for all of the data sets. As shown in Fig.2, the power
spectrum for the Brandon daily snowfall displays scaling for
time scales shorter than one month; at longer time scales, the
scaling behaviour disappears. All of the snowfall datasets
had values ofβ <1 (mean=0.24, s.d.=0.06), indicating that
the data are stationary. Although the mean of the snowfall
frequency distribution may be stationary, it does not neces-
sarily follow that the scaling behaviour of snowfall is con-
stant over time.

The scatter about the best-fit line visible in Fig.2 has more
than one cause. Figure3 shows that the magnitude ofβ for a
given snowfall data set tends to be unstable over timescales
on the order of decades, undergoing frequent statistically-
significant shifts which indicate temporal variability in the
scaling behaviour. In this analysis, and in subsequent anal-
yses, the entire time series was divided into ten sections of
equal length, and statistical properties were determined for
each section.

At smaller scales (i.e. within each section) the scatter ap-
pears to be fairly consistent over time, as shown by the 5%
and 95% confidence levels plotted in Fig.3 which show little
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Fig. 3. Temporal variability of the power spectrum scaling exponent
(β) for Brandon daily snowfall over the period 1895 to 2003, deter-
mined by dividing the time series into 10 sections of equal length.
The 5% and 95% confidence levels ofβ are also plotted for each
section.

temporal variation with respect to the value ofβ. The differ-
ence between the value ofβ and its 5% or 95% confidence
levels varies by less than 10% over all ten sections of this
dataset.

From a practical point of view, the variation in scaling
within each section, which appears to be random, is of less
concern than the potential existence of a trend. As is dis-
cussed below, datasets showing scaling can be downscaled
stochastically, and random variability can be accomplished
by adding random variation to the downscaling parameters.
The presence of a trend in the scaling parameters would be
more problematic as it would imply that scaling parameters
used in the past may not be usable in the future.

Therefore, it is important to quantify the type and magni-
tude of the scaling present within snowfall data sets to deter-
mine the parameters required for downscaling snowfalls over
time scales shorter than one month. Equally, it is important to
determine the presence, if any, of trends in these parameters.

4 Multiscaling analysis

The type and magnitude of scaling present in a data set can
be quantified in several ways; one of the simplest is through
the moment scaling functionK(q) which is related to the
normalised values of the data set,ε(t), by (Olsson, 1995)

〈ε
q
λ〉 ≈ λK(q) (2)

where:
q = moment, and
λ = scale factor (ratio of scale of interest to size of entire data
set).

The symbol〈〉 refers to ensemble averaging the results of
the calculations over all possible values ofε(t). If the data
are monofractal, then plots ofK(q) vs. q will describe a

straight line. If the data are multifractal, then plots ofK(q)

vs. q will exhibit curvature, which can be quantified by the
universal multifractal parameters (constants)α and C1 as de-
scribed by (Seuront et al., 1999)

K(q) =
C1

α−1
(qα

−q), for α 6= 1,q ≥ 0. (3)

The parametersα and C1 are indices of the inhomogeneity
of data. Small values ofα, and large values of C1, imply a
tendency to large fluctuations in value within a data set (Finn
et al., 2001). The minimum possible value of C1 is zero,
which corresponds to a dataset whose values are completely
uniform. The maximum value of C1 is equal to the dimen-
sion of the observation space, which in the case of a time
series is 1. The value ofα is always between 0 and 2 (Seu-
ront et al., 1999).

5 Scaling of extremes

The probability density functions of the snowfall data sets
show extreme positive skewness, because most of the daily
snowfall data values are zero. The upper tails of these dis-
tributions are very “fat”, compared to Gaussian distributions,
the largest values fitting the scaling relationship defined by
Olsson(1995) as

Pr(X >x) ∝ x−qD , (4)

where:
X = a given value,
x = a threshold value, and
qD = scaling exponent.

The scaling exponentqD has been identified as being the
limiting moment beyond which moments will diverge from
scaling relationships (Olsson, 1995). In practice, applica-
tion of Eq. (4) is made more difficult by the fact that loga-
rithmic plots of Pr(X > x) vs. snowfall typically describe a
curve, rather than having the abrupt “sill” described byOls-
son(1995), which requires the use of a threshold or restricted
range for computingqD.

Using the 100 largest values from each data set, the mean
value ofqD for the snowfall datasets is 3.57 (s.d.=0.42). To
ensure that Eq. (3) can be applied, the maximum value of
q used for all calculations ofK(q) in this research was set
to 3.0. The values ofK(q) determined from the snowfall
datasets typically agree very well with the values derived
from the universal multiscaling relationship for values of q
between 1 and 3.

Values of C1 andα for each data set were determined us-
ing the Double Trace Moment (DTM) method, as described
by Olsson(1995), for time periods up to 32 days, and for
moments between 1.1 and 3 in increments of 0.1. The mag-
nitudes ofα (mean=0.62, s.d = 0.07) and C1 (mean=0.46,
s.d.=0.03) computed for the snowfall datasets were similar
to those found byOlsson(1995) of 0.626 and 0.44, respec-
tively, for precipitation over time scales of 8 min to 11 days.
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Fig. 4a. K(q) vs. q for all sections of the Medicine Hat snowfall.
Each section is one-tenth of the entire time series. The points cor-
respond to empirical values; the lines represent the universal multi-
scaling relationships computed for each section.

6 Multifractal stability

To test the temporal stability of the universal multifractal pa-
rameters,α and C1 were calculated for sub-sections, each
consisting of one-tenth of each snowfall time series. As
shown in Fig. 4, the plots ofK(q) vs. q, and consequently
values ofα and C1, show frequent and significant changes
throughout each of the datasets. Interestingly, the plots of
K(q) vs.q are only slightly curved, indicating that the snow-
falls on the Canadian prairies, likeMolnar and Burlando’s
(2008) observed Swiss snowfalls, are weakly multifractal.
Although the weakness of the observed multifractality im-
plies that monofractal methods might be used in practice for
downscaling, this study uses multifractal methods which are
more general and which allow the use of a simple downscal-
ing method described below.

Maximum and minimum values forα and C1 for each
data set are listed in Table1, together with the results of
Mann-Kendall analyses of the parameters for trends at the
5% level. Many of the datasets show the presence of sig-
nificant trends in theirα values. Although none of the C1
parameters showed significant trends, and their magnitudes
showed less variability than did the values ofα, the values of
the parameters are inversely related, as shown in Fig.5.

7 Snowfalls and snow accumulation

The hydrography of the Canadian prairies is very unusual
because much of the land drains internally to small wetlands,
rather than contributing to the flow of major rivers (Godwin
and Martin, 1975). As described above, the hydrology of
the region is also unusual as almost all surface runoff events
are due to the spring melt of winter snowpacks, rather than
to runoff from rainfall. Therefore, it is difficult to link the
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Fig. 5. Relationship between C1 andα for all sections of each snow-
fall time series.

multifractality of rainfall to that of streamflow records in this
region, as was done in France byTessier et al.(1996).

As snowpacks accumulate over an entire season, they
would seem to be insensitive to the distribution of individ-
ual snowfall events. However, blowing snow events trans-
port snow horizontally among landscape units and sublima-
tion of blowing snow removes snow from the landscape. The
moisture fluxes are highly dependent on wind speed, sub-
limation varying as the 5th power, and horizontal transport
varying as the 4th power (Pomeroy and Gray, 1995; Essery,
2001). The fluxes also depend on the state of the snowpack,
old snow being more resistant to erosion than new snow (Li
and Pomeroy, 1997). The difference between the probability
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Table 1. Temporal variability in values ofα and C1, and the results of Mann-Kendall trend analyses.

α C1
Site Min Max Mann-Kendall Min Max Mann-Kendall

Calgary 0.30 0.55 Positive trend 0.48 0.57 No trend
Medicine Hat 0.29 0.54 Positive trend 0.51 0.55 No trend
Indian Head 0.20 0.58 Positive trend 0.46 0.57 No trend
Regina 0.34 0.65 No trend 0.43 0.51 No trend
Saskatoon 0.33 0.63 Positive trend 0.42 0.54 No trend
Brandon 0.25 0.48 No trend 0.52 0.60 No trend
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Fig. 6a. Density plot of 1 April cumulative seasonal snowfall at
Banff, AB and snow on ground at Bow River snow course (1937–
2009). The horizontal distance between the two sites is approxi-
mately 3 km, and the difference in elevation is less than 200 m.

density function (PDF) of cumulative snowfall and that of
the snow on the ground can be quite dramatic, as shown in
Fig. 6aand6b, which plots historical snow data surveyed by
Alberta Environment. The site in Fig.6a is near Banff, Al-
berta in a sheltered mountain valley and in this case wind
redistribution is muted, but a shift is still evident possibly
due to land use effects, though the PDF shape is conserved.
The site in Fig.6b is southeast of Edmonton, Alberta in the
prairies where wind redistribution of snow can be significant
and shows ablation of snowfall as well as a change in the
shape of the PDF. It is unlikely that the snowfall ablation is
strongly influenced by melt as significant melt events prior to
1 March are uncommon on the Canadian prairies; the change
in the shape of the PDF is consistent with removal and redis-
tribution of snow by wind. It is anticipated that the temporal
and frequency distributions of snowfall events will signifi-
cantly affect the accumulation of snow which in turn will
affect the distribution of runoff events.

The influence of snowfall disaggregation on snowcover
generation was tested using the Cold Regions Hydro-
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Fig. 6b. Density plot of 1 March cumulative seasonal snowfall at
Edmonton, AB and snow on ground at Bellis snow course (1974–
2009). The horizontal distance between the two sites is approxi-
mately 15 km, and the difference in elevation is less than 60 m.

logical Model (CRHM), a physically-based hydrological
model developed at the Centre for Hydrology, University of
Saskatchewan (Pomeroy et al., 2007). CRHM is able to ac-
curately simulate the accumulation and sublimation of blow-
ing snow of prairie landscapes and, being physically-based
is well-suited to simulation of changed conditions (Fang and
Pomeroy, 2008). The surface routines of CRHM use physical
parameters, such a crop height, which can be measured rather
than being calibrated. Although the parameters of CRHM’s
subsurface flow modules do require calibration, these mod-
ules were not used in this study.

8 Downscaling snowfall data

Simulated snowfall data were created using the random mul-
tiplicative cascade method (Gaume et al., 2007), where the
monthly snowfall is repeatedly subdivided over several gen-
erations. In the first generation, the snowfall is divided into
two portions, according to
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Fig. 7. Schematic illustration of four generations of the multiplicative cascade method. In each generation, the total value of all pieces is 1.
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S1,1 = S0η, S1,2 = S0(1−η), (5)

where:
S0 = monthly snowfall,
S1,1 = snowfall assigned to first piece in the first
generation,
S1,2 = snowfall assigned to second piece in the first
generation, and
η=random number in the range 0–1.

The process is then repeated iteratively, doubling the num-
ber of pieces with each generation. As the number of pieces
increases the data set becomes more heterogeneous, although
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Fig. 9. Mean values ofα and C1 computed for all 10 section of
the Saskatoon daily snowfall time series and from simulated daily
snowfall data downscaled from measured monthly snowfalls.

the total value of all of the pieces does not change. The pro-
cess is shown schematically for four generations in Fig.7.

To produce daily values, 5 generations are used creating
32 pieces, which were reduced to the required daily values
for each month by

Sdaily = S5,1..n

(
S0∑n
1S5,n

)
, (6)

where:
Sdaily = daily snowfall values for a given month,
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Fig. 10: Mean CRHM simulated snowcover accumulations for three HRUs, based on measured monthly snowfall downscaled
to daily values. The curves represent accumulations from downscaled data having α and C1 values of 0.36 and 0.64, and 0.72
and 0.41, respectively, which are similar to the extremes of the values measured in sub-sets of historical data.
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Fig. 10.Mean CRHM simulated snowcover accumulations for three HRUs, based on measured monthly snowfall downscaled to daily values.
The curves represent accumulations from downscaled data havingα and C1 values of 0.36 and 0.64, and 0.72 and 0.41, respectively, which
are similar to the extremes of the values measured in sub-sets of historical data.

S5 = the 5th generation, and
n = number of days in given month.

By manipulating the distribution ofη, data series having
varying values ofα and C1 can be generated. The values ofη

were drawn from a lognormal distribution whose parameters
were manipulated by trial-and-error to produce the desired
values ofα and C1. The lognormal distribution was one of
several evaluated byGaume et al.(2007). Further research
will be required to determine the optimal probability density
function ofη for snowfall disaggregation over the Canadian
prairies.

As shown in Fig.8, increasing the magnitude ofα while
decreasing the magnitude of C1 results in snowfall distribu-
tions which tend to produce more frequent, smaller events
which are distributed more evenly in time. In both cases
the total snowfall is 19.5 mm. Snowfall events having large
values ofα will result in snowpacks whose surfaces are rel-
atively new and therefore more subject to blowing, at any
given time.

9 Simulation

The basin simulated by the model is of a typical small
prairie stream, consisting of upland fallow and stubble fields
which drain runoff into a grassed intermittent stream chan-
nel. It is modelled on Creighton Tributary at Bad Lake,
Saskatchewan, and all model parameters were taken from
this location. The ability of CRHM to produce accurate sim-
ulations of snow accumulations at this location was demon-
strated byPomeroy et al.(2007). Because of the shortness of
the recorded data set (less than 20 years), meteorological data
from Saskatoon were used in this study. Although Saskatoon
is approximately 150 km northeast of Creighton Tributary the
intention is to simulate the effects of downscaling, rather than
to accurately model the hydrology of a particular location.

CRHM uses Hydrological Response Units (HRU) to simu-
late the behaviour of each of the basins’s sub-regions. Within
each HRU all state variables, forcings, and parameters are
assumed to be spatially uniform. An important feature of

CRHM is that HRUs may be linked in a variety of ways.
Although runoff drains to the stream channel, the action of
blowing will transport snow from the fallow field to the stub-
ble field, and from both the stubble and fallow fields to the
grassed channel, based on their relative surface roughnesses.
Traditional hydrological models, where connectivity is based
on surface water drainage, cannot properly capture the redis-
tribution of wind-blown snow.

Although CRHM uses daily snowfall values, the model
is run on an hourly time step and requires hourly values of
air temperature, relative humidity, wind speed, rainfall, and
incoming solar radiation. Each simulation was run for the
period 1960–2006, for which good values of the hourly forc-
ing variables other than solar radiation were available. Daily
incoming shortwave solar radiation was estimated from air
temperature using the method ofAnnandale et al.(2001), and
was downscaled to hourly values.

Because the snowfall downscaling process is stochastic,
the set of downscaled data will depend on the particular set of
random values ofη generated from the specified distribution.
To reduce the effects of the finite lengths of the simulations,
fifteen realizations were run for each disaggregation using a
single set of lognormal parameters to specify the frequency
distribution ofη. The downscaled datasets had fairly consis-
tent values ofα and C1 over each set of realizations, their
mean coefficients of variation being 0.07 and 0.03, respec-
tively. As shown in Fig.9, the ranges ofα and C1 values, and
their relationship to each other, are similar for the synthetic
data and for the observed Saskatoon daily snowfall values.

10 Results

The CRHM runs produced snow accumulations for each
HRU for which mean daily snow water equivalent (SWE)
values were computed over each set of realizations. As
shown in Fig.10, the variation inα and C1 caused vari-
ation in the timing and magnitudes of snow accumulation
and melt for each HRU. The accumulation on the stubble
HRU was least affected, probably because it both receives
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Fig. 11. Variation in simulated peak snowfall vs.α for simulated
snowfalls on fallow, stubble and grass HRUs. Measured snowfall
data from Saskatoon, SK, 1960–2006.

and transmits blowing snow. As a control, a CRHM run was
executed using the monthly snowfall totals distributed evenly
over all days in each month.

The effect of variation in the multifractal parameters on
the mean peak accumulation of SWE is shown in Fig.11.
The plots show that increased values ofα in the snowfall
time series result in linearly increased values of mean peak
SWE on the grass HRU, decreased values on the fallow field
and largely unchanged values on the stubble HRU. These re-
sults are consistent with the assumption of increased blowing
snow events resulting from increased values ofα, which cor-
respond to increased uniformity of snowfall.

When the control uniform snowfalls were used in the
CRHM simulation, the magnitudes of the resulting mean
peak SWE for the fallow, stubble and grass HRUs were
48 mm, 59 mm, and 92 mm, respectively. These values are
consistent with the trends in modelled mean peak SWE with
increasing uniformity in snowfall noted above. As would be
expected, the control grass HRU peak SWE is greater than,
the fallow HRU peak is smaller than, and the stubble HRU
peak is approximately the same as, the values simulated us-
ing the maximum value ofα.

11 Summary and conclusions

Analyses of daily snowfall on the Canadian prairies de-
termined that the datasets exhibit multifractality at tempo-
ral scales shorter than one month, and that the multiscal-
ing shows evidence of trends for decreasing intermittency of
snowfall over the last century at the majority of sites tested.
The transformation of snowfall into snow on the ground via
redistribution and ablation processes means that frequency
distributions of snowfall cannot be used directly to create
distributions of snow on the ground. Blowing snow and

snow ablation simulations driven by stochastic or measured
snowfall estimates can estimate snow on the ground using
physically-based calculations. Such simulations demonstrate
that the timing and quantity of the spring snowmelt is af-
fected by the observed multiscaling of daily snowfalls, prob-
ably because the effects of blowing snow on snowfall ac-
cumulation are strongly influenced by the timing of snow-
fall. Because the majority of annual runoff in this region
is typically the result of spring snowmelt, and because cli-
mate models require downscaling to produce daily snowfalls,
the variability in the multiscaling of prairie snowfalls repre-
sents an additional source of uncertainty in determining the
hydrological effects of climate model outputs. This can be
compensated for in historical analyses but at the present time
there is no method to identify likely scaling trends for future
scenarios.
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