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= Massive amounts of observation data
= Difficult to synthesize

= At smaller scales, we have processes that are
apparently common, yet at larger scales, we
have “catchment functioning” which, certainly in

the literature, presents every catchment as a
unique situation.



= |t is difficult to extrapolate what we observe at the
plot/slope scale to larger scales — even the HRU
scale — as most of our process knowledge is
“Ycontrol volume” based, and larger scale theories
are often overtly complex and/or just theories.

= We have never “proven” HRUs exist — they just do
for our convenience.



= Don'treinvent the wheel.




= Be cognizant of the data. In most cases, there is
little or no data (or reanalysis data)

= This should be considered when developing
parameterization schemes — or at least testing
them. Why would we make our parameterization
schemes reliant on massive amounts of data?¢

= However..... We should base them on massive
amounts of data and direct observation.



Gromomonnrs

= Basin-scale controls on runoff:

— Thaw
— Infiltration/redistribution in organic soils
— Runoff

= Don't start parameterizing until we know that we
know what we know.....



& Anesample—ground thaw

= Objectives:
— Evaluate the performance of commonly used
simulation algorithms in permafrost regions

— Evaluate commonly used soil parameterization
schemes for both mineral and organic soll

— Provide guidelines for the implementation of
appropriate ground thermal models
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Tests of soil thermal conductivity parameterisation

= --Johansen'formulation
= --De Vries's formulation
Test of unfrozen water parameterisation

. --Segmented linear functions
m --Power function
3 --Water potential-freezing point depression formulation

Tests of simulation algorithms (best parameterisation)
. --Runl: All the available inputs (Ti,,, Toot Bwr Bice:Tsini)

ice’

- --Run2: Without T,;, lower boundary conditions and
O, Oice Tsin havVe fo be assumed.

o --Run3: Only T,,, was supplied. Soil water assumed to
be saturated at all fimes.
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Tests of different soil thermal conductivity parameterisation
methods, i.e. Complete Johansen’s equations (dark solid
lines), Commonly used Johansen's equations (grey solid
lines), and a simplified de Vries's method (dashed lines).
Open circles are observations.
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Test of unfrozen water parameterisation methods, i.e.
segmented linear function (dark solid lines), power function
( grey solid lines) and water potential-freezing point
depression
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) ififrafion nfo frozensols

— New Field Experiments
— New Instrumentation (MFHPP)
— New Modelling

= Modify Hydrus 1-D

= SHAW

= HAWTS
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Soil liquid water content (msm's)
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= Paramterization....... ¢ Not yet.....



= While it may seems straight-forward, modelling runoff
(we've been doing it for decades), at the HRU scale
it is challenging.

= “Emergence” is a term rapidly polluting itself in the
runoff community.

= Do our plot/field scale results have any relevance at
the HRU or larger scale?



= Some debating poinfs:

— Should we base parameterization on conservation equations
at the point scale?¢

— How do we scale other linked properties like momentume Or
do we even need toe

— Environmental mechanics typically use some sort of
gradient/potential approach —is this appropriate at larger
scales? Field-scale Ksat increases an order of magnitude for
every magnitude of scale increase.



= Landscape Geometry

— Travel/Residence time based on terrain geometry and soill

attributes.
— Advantages: relatively easy extraction from DEM/Satellites

— Drawbacks: Do we really know that each HRU is an HRU?
What field evidence do we even have that HRUs exist?
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Is HRUTtile at the outlet
above capacity?

Y no \@s

Input forcing data

Note cumulative storage from t-1 time step

Calcaulte sub-grid runoff with cdf slope

v Grid runoff = 0 distribution function
Run vertical water budget; v v
¥ Distribute sub-grid runoff with cdf slope / Route runoff from grid /
distribution function
Calculate change in storage for each ¥ v
tile/HRU P
< End
v Recalculate HRU/tile water budget
Calculate cumulative storage for each
tile/HRU
v
) . 40
Note storage minus storage threshold; this B
no is water available for runoff as [
v u y = -864.33x° + 1596.4x - 699.22
30 [
| Do any tiles/HRU’s have o5 o
a positive S-St value? B
E 20 runoff distribution function
¥ yes 15 |
Flag HRU'sltiles with positive S-St values 1o ;
¥ 5 F
output each HRU/tile's o -
distance to stream outlet,
area, S-St flags to table 0.8 0.85 0.9 _0'95 1 1.05
v slope of Sc - distance cdf
Calculate pdf and slope of cdf of storage . . .
capacity exceedance vs distance from outlet of | — | Parameter file for each tile/HRU includes:
HRU/tile’sthat have exceeded storage capacity 1) Storag e threshold
2) Distance from outlet
3) Area

4) Runoff distribition function
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=  Tracers
Catchment

(Complex Flow Path Distribution)

— We still have not fully utilized
tracers in our work.
Residence Time Distribution
determinations are
becoming increasingly sl
common in the literature, Time [y]—
yet not used here. This may s <%
be the best way to Std Dev. 3.4 %
physically-stochastically Potential
para meterize runoff at Transit Time Distribution

Representations
larger scales.
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— Can tracer-based RTD be L .
linked to basin-scale
attributese It can in other
environments, but in IP3
basins, we have a unique 0 T R e —

set of prOblemS, Normalized Transit Time
V7]

Transit Time
Distribution, git) [-]




= The key to parameterization (I think) is capturing
these emergent properties at the HRU scale not
observed at the slope/plot scale. While we often
model HRU scale variables (like mean thaw depth
with the appropriate moments) — how do these
moments act fo affect infiltration/runoff, etce



