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MESH: A MEC surface/hydrology 
configuration designed for regional 
hydrological modeling

• Designed for a regular B C C C ADesigned for a regular 
grid at a 1-15 km 
resolution
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MESH: A MEC surface/hydrology configuration 
designed for regional hydrological modelingdesigned for regional hydrological modeling

• The tile connector
(1D, scalable) redistributes mass Tile

connectorand energy between tiles in a grid 
cell

– e.g. snow drift
• The grid connector (2D) is

connector

• The grid connector (2D) is 
responsible for routing runoff

– can still be parallelized by 
grouping grid cells by 

Grid
connector

subwatershed



From Measurements to ModelsFrom Measurements to Models
Resolution 1 m 100 m 100 m - 2 km 2 - 10 km 10 km - 10 km

Landscape type Pattern/tile
Tile/HRU Tile/HRU Grid/small basin Multi-grid/medium basin Multi-grid
Point Hillslope Sub-basin Basin Mesoscale Regional;

Prediction Terrestrial
Open Water
Snow and Ice

Previous LSS Scaling Methodology

Parametrization Terrestrial
Open Water
Snow and Ice

Process Terrestrial
Open Water
S d I

IP3 Scaling Methodology

Snow and Ice

MESH MESH MESH MESH
MODELS CHRM CHRM CHRM CHRM

CEOP Hydrology CEOP Hydrology
Quinton CFCAS Study--------------->                    <----------------------------------MAGS

Modelling and parameterization hierarchy.  Previous LSS scaling methodology 
refers to projects that parameterized and evaluated predictions of processes at a 
point and then applied directly to regional scales IP3 scaling methodology involvespoint and then applied directly to regional scales.  IP3 scaling methodology involves 
step-wise transfer of upscaled processes to basin-scale parameterizations and then 
to regional scales



Scale mattersScale matters
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AdvancementsAdvancements

• Establishing MESH domains at the basin scaleg
– Partnerships for most research basins have formed.
– Single Grid version of CLASS for each basin has been set-up 

by U of Wby U of W.
▪ Soulis and Seglenieks

– Software Engineering and repository established at HAL lab
Davison▪ Davison

– DDS working with CLASS and MESH
▪ Tolson
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Objectivesj

To parameterise a LS-Hydrological model A stepwise procedure isTo parameterise a LS Hydrological model,A stepwise procedure is 
applied: 

1. Calibration of a LSS in a point mode using a single-objective 
function (snow water equivalent-SWE). Examination of the effects ( q )
of including an explicit representation in a LSS of: 
a) Fully distributed (calibrated)
b) Initial conditions, 
c) Forcing data. 
d) all

2. Calibration of a LS-Hydrological model using a multi-objective 
function (streamflow and snow cover area SCA) by keeping thefunction (streamflow and snow cover area-SCA) by keeping the 
vegetation parameters calibrated in point 1.  



Wolf Creek – Trail Valley Creek

T il V ll C kTrail Valley Creek

G B iGranger Basin
60° 31’N, 135° 07’W 
Area: 8 km2 TVC Basin

68° 45’N, 133° 30’W 
Area: 63 km2Area: 63 km2



Landscape Heterogeneity



Modelling strategy
LSS

Parameter PLT NF

Open 
tundra

Shrub 
tundra

The Canadian Land Surface Scheme 
(CLASS 3 3)

tundra tundra

Max. LAI (LAMX) 0.53
(0.5, 2)

2.81
(2, 3)

Min. LAI (LAMN) 0.28
(0.5, 3)

0.99
(0.4, 1)

LN roughness length (LNZ0) 4 09 2 42(CLASS 3.3)
Calibration 2003

Objective function: Snow Water Equivalent 
(SWE)

LN roughness length (LNZ0)
[m]

-4.09
(-4.8, -

3.5)

-2.42
(-3.7, -

1.8)

Visible albedo (ALVC) 0.183
(0.02, 
0.2)

0.087
(0.03, 
0.2)

Near infrared albedo (ALIC) 0 424 0 464Dynamically Dimensioned Search (DDS) 
global optimisation algorithm (Tolson and 
Shoemaker WRR 2007) 
25 parameters (12 for shrubs, 12 for grass, 

Near-infrared albedo (ALIC) 0.424
(0.2, 0.4)

0.464
(0.3, 0.5)

Biomass Den. (CMAS)
[Kg·m-2]

0.11
(0.05, 
0.35)

6.13
(6, 10)

Min. stomatal resist. (RSMN) 251.5
(50 300)

51.9
(50 300)and 1 for snow-cover depletion, SCD) that 

govern snowmelt

Validation 2002 and 2004

(50, 300) (50, 300)

Coef. stomata resp. to light (QA50) 
[W·m-2]

46.1
(20, 60)

21.1
(20, 60)

Coef. stomatal resist. to VP deficit 
(VPDA) 

1.31
(0.2, 1.5)

1.08
(0.2, 1.5)

Effects of initial conditions were analysed
from extensive field observations whereas 
forcing data effects were evaluated using 
the Cold Region Hydrological Model 

Coef. stomatal resist. to VP deficit 
(VPDB)

0.61
(0.2, 1.5)

0.93
(0.2, 1.5)

Coef. stomatal resist. to soil WS 
(PSGA)

146.7
(50, 150)

93.5
(50, 150)

Coef. stomatal resist. to soil WS 
(PSGB)

4.92
(1 10)

1.09
(1 10)

g y g
(CRHM) as a prepossessing data for 
CLASS.

(PSGB) (1-10) (1-10)

Lower snow depth limit for 100% SCA 
(D100) [m]

0.42
(0.05-0.5)

0.81
(0.05-1)



Modelling strategy
CRHM – Short wave correction



Modelling strategy
CLASS – Point mode



SWE - Calibration period - 2003
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SWE - Calibration period - 2003
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SWE - Calibration period - 2003
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SWE - Validation period - 2002
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SWE - Validation period - 2004
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Avg Initial ConditionsAvg. Initial Conditions
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Aggregated Forcing data - 2003gg g g
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Aggregated Forcing data – 2002-2004gg g g
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Aggregated vs Distributed
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Modelling strategy
Transference of parameters



Modelling strategyg gy
LS-Hydrological model

The MESH modelling system g y
Calibration 1996
Objective functions: 
St fl d b i S C A (SCA)Streamflow and basin average Snow Cover Area (SCA)

Dynamically Dimensioned Search (DDS) global 
optimisation algorithm

15 parameters (7 for shrubs 7 for grass and 1 for snow-15 parameters (7 for shrubs, 7 for grass, and 1 for snow
cover depletion, SCD)

Validation 1999Validation 1999



Trail Valley Creek - SCA
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Trail Valley Creek - Streamflow
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ConclusionsConclusions

• A regionalization approach for transferring parameters of a physically based 
LSH model in sub arctic and arctic environments has been presentedLSH model in sub-arctic and arctic environments has been presented. 

• This approach was based on a landscape similarity criterion and focused on 
two aspects. 

– First, model parameters are landcover-based rather than basin-based, and 
second a step wise calibration procedure was used to estimate the effective– second a step-wise calibration procedure was used to estimate the effective 
parameters. 

• The landcover-based parameters offer an interesting alternative for PUB 
due to the difficulties in finding basin-based criteria for transferring 
parameters.parameters. 

• Distributed and physically based models, landscape-based parameters 
appear to be a more feasible framework for transferring information 
between catchments than regionalisation schemes using regression 
methods based on basin characteristics. 

• A special case however, was the inclusion of the SDC parameter in the 
calibration process at TVC. The main reasons were its poor physical basis 
and the resulting difficulty in deriving a landscape-base value from 
observations.



What NextWhat Next

• Extend Wolf Creek analysis to entire basiny

• Examine basin segmentation approaches and 
combinations of topographic and land cover GRU’scombinations of topographic and land-cover GRU s.

• Look at continuous simulation to assess impacts on IC.
– Tile connectors for redistribution of blowing snow 

• Extend analysis to other basins• Extend analysis to other basins

• Pay attention to IP-1 and IP-2 findings 


