Liniseersiy of
Waterloo

Upscaling Threshold Nonlinearities
in Distributed Surface Water Models

.—’1"
-
civil
environmental



Problem Statement

Linineprsiy of

Waterloo

* Threshold non-linearities are ubiquitous in

numerical surface water models

o Rate processes and/or state-dependent parameters represented using

discontinuous “jump” or “step” functions
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* |t has been demonstrated that threshold non-linearities
induce numerical instability and reduce calibration

performance (Kavetski & Kuczera, 2007)
Objective function surface

Objective Function Gradient
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Kavetski, D., and G. Kuczera (2007), Model smoothing strategies to remove microscale
discontinuities and spurious secondary optima in objective functions in hydrological
calibration, Water Resour. Res., 43, W03411, doi:10.1029/2006WR005195
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» Kavetski & Kuczera (2007) proposed the use of
smoothing functions to handle rate discontinuities

o The goal was to alleviate non-linear artifacts while still
respecting the essence of relationships between rate
processes and state variables v
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Benefits:

Demonstrated improvement in the objective

function structure, and therefore the estimability of

model parameters and parameter uncertainties
Faster calibration

Removal of secondary optima / multimodality

More well-behaved models with fewer stability and
convergence issues

Easy to implement — simple functions
Detriments:

These smoothing functions were purely numerical
in nature and had no physical basis
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Many surface water component ODEs may be written in
the following form:

- = > £M(t, )

We will here assume that the processes, M, are upscaled
from a point process with threshold discontinuities

By making assumptions about the sub-computational scale
variability in parameters, variables, and/or forcing functions
we often can estimate effective (mean) rate processes
analytically

These mean rate processes are smoother than their point-
scale equivalents
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Hypothesis

* Simple area-weighted process upscaling may be used to reduce the
non-linearity of surface water models by (analytically) smoothing
out discontinuities

* Smoothing Advantages:
o Improves stability
o Improves calibration performance
o Easy to implement (once derived*)
o Quickly calculated
* Upscaling Advantages:
o Physically-based*
o Recognizes and incorporates sub-HRU variability*
* Disadvantages:
o Relies on assumptions about sub-computational-scale distributions



A simple example:
Degree-day snowmelt
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* The simplest degree-day snow melt model

(assumed to be valid at the point scale):

My (T =T

Mi&T)= {
| 0

if[T > T,

ot hervaise

Or, equivalently:

M(S, Ty=M, - (T-="T;)-H(T —=T;)- H(S)
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* Averaged melt rates may be calculated by assuming the
frequency distributions of temperature and snow depth:
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A simple example:

Degree-day snowmelt
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Disclaimer:

(cThe following research 1s not an endorsement

of, nor an advertisement for, the standard or
modified degree-day snow model as a
representative of point-scale melt processes.
The opinions shared here are not necessarily
those of the University of Waterloo, and the
authors recognize the superiority of
alterative, physically-based snow models that
may include a full energy balance,
sublimation, radiative transfer, lateral
transport, freezing/thawing, albedo, and/or
canopy iInfluences.
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Temperature: Snow depth:
Normally distributed 3-parameter log-normally distributed
o . (T =T . 1 - (Ints = Sy1 = Inf 52
friT} = W FrdR P (_T) fsi&) = ([ — &g los "_..fﬁ{ <P (_ :’(:rf; )

1, (T =T, o (T = T,p* 1, 1 S

Percentage ot snow-
covered ground, F

Averaged melt rate over computational unit

A simple function of

e average temperature

e average snow depth

e distribution parameters

-Reverts to point scale when c,=6,=0



Smoothing Effect of Upscaling

Normalized Melt Rate

Upscaling of average melt rate with
change in temperature variance
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Testing j

1 parcel 1 parcel 10,000 parcels
(traditional approach)  (upscaled approach) Lognormal depth
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Testing

Average Snow Depth [mm]
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Testing

* Sinusoidal temperature variation:
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* |n order to effectively use this approach, information
regarding property and state variable distributions is needed

o Empirical, generalizable relationships for distribution

parameters as a function of scale
A

Or Mountainous terrain

Flat terrain

>

Basin area

o Understanding of evolution of distribution parameters
over time



Extensions

* Similar upscaling methods can be applied to rates
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controlled by any forcing function or state variable with

infinite limits

% Precip as Rain -

2 5
Average Temperature

* Bounded variables require special attention (the

math is a bit trickier)
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A physically-based argument has been provided for threshold
smoothing

Simple analytical upscaling approaches may improve calibration,
stability, and accuracy of numerical models

Purely numerical smoothing parameters (Kavetski and Kuczera, 2007)
replaced with measurable physical quantities
Challenges arise from assumptions about correlation,
distributions, etc. at the sub-computational scale

Despite imperfections, even naive upscaling appears to be an
improvement over the standard approach

Benefits of smoothing remain regardless of upscaling accuracy

The next step is try to apply these methods to more
sophisticated process models (e.g., a full energy balance
model), address parameter correlation, etc.



