

Upscaling Threshold Nonlinearities in Distributed Surface Water Models

J. R. Craig and A. Snowdon

Dept. of Civil & Environmental Engineering

University of Waterloo

Problem Statement

- Threshold non-linearities are ubiquitous in numerical surface water models
 - Rate processes and/or state-dependent parameters represented using discontinuous "jump" or "step" functions

Problem Statement

 It has been demonstrated that threshold non-linearities induce numerical instability and reduce calibration performance (Kavetski & Kuczera, 2007)

Kavetski, D., and G. Kuczera (2007), Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration, *Water Resour. Res.*, 43, W03411, doi:10.1029/2006WR005195

Numerical Smoothing

- Kavetski & Kuczera (2007) proposed the use of smoothing functions to handle rate discontinuities
 - The goal was to alleviate non-linear artifacts while still respecting the essence of relationships between rate

Numerical Smoothing

Benefits:

- Demonstrated improvement in the objective function structure, and therefore the estimability of model parameters and parameter uncertainties
 - Faster calibration
 - Removal of secondary optima / multimodality
- More well-behaved models with fewer stability and convergence issues
- Easy to implement simple functions

Detriments:

 These smoothing functions were purely numerical in nature and had no physical basis

Smoothing: Another approach

 Many surface water component ODEs may be written in the following form:

$$\frac{d\overline{\phi}}{dt} = \sum \pm \overline{M}(t, \overline{\phi})$$

- We will here assume that the processes, M, are upscaled from a point process with threshold discontinuities
- By making assumptions about the sub-computational scale variability in parameters, variables, and/or forcing functions we often can estimate effective (mean) rate processes analytically
- These mean rate processes are smoother than their pointscale equivalents

Hypothesis

- Simple area-weighted process upscaling may be used to reduce the non-linearity of surface water models by (analytically) smoothing out discontinuities
- Smoothing Advantages:
 - Improves stability
 - Improves calibration performance
 - Easy to implement (once derived*)
 - Quickly calculated
- Upscaling Advantages:
 - Physically-based*
 - Recognizes and incorporates sub-HRU variability*
- Disadvantages:
 - Relies on assumptions about sub-computational-scale distributions

A simple example: Degree-day snowmelt

 The simplest degree-day snow melt model (assumed to be valid at the point scale):

$$M(S,T) = \begin{cases} M_a \cdot (T - T_f) & \text{if } T > T_f \text{ and } S > 0 \\ 0 & \text{otherwise} \end{cases}$$

Or, equivalently:

$$M(S,T) = M_a \cdot (T - T_f) \cdot H(T - T_f) \cdot H(S)$$

 Averaged melt rates may be calculated by assuming the frequency distributions of temperature and snow depth:

$$\overline{M} = \frac{1}{A} \int_A M(S,T) dA = \int\limits_{-\infty}^{\infty} M f_M(M) dM = \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} M(S,T) \cdot f_{ST}(S,T) dT dS$$

A simple example: Degree-day snowmelt

lel Disclaimer: The following research is not an endorsement of, nor an advertisement for, the standard or modified degree-day snow model as a representative of point-scale melt processes. The opinions shared here are not necessarily those of the University of Waterloo, and the authors recognize the superiority of alterative, physically-based snow models that he may include a full energy balance, lth: sublimation, radiative transfer, lateral transport, freezing/thawing, albedo, and/or canopy influences.

Upscaling

Temperature:

Normally distributed

$$f_T(T) = \frac{1}{\sqrt{\sigma_T 2\pi}} \exp\left(-\frac{(T - \bar{T})}{2\sigma_T^2}\right)$$

Snow depth:

3-parameter log-normally distributed

$$f_T(T) = \frac{1}{\sqrt{\sigma_T 2\pi}} \exp\left(-\frac{(T - \bar{T})^2}{2\sigma_T^2}\right) \qquad f_S(S) = \frac{1}{(S - S_0)\sigma_S \sqrt{2\pi}} \exp\left(-\frac{(\ln(S - S_0) - \ln(\bar{S}))^2}{2\sigma_S^2}\right)$$

$$\overline{M} = M_a \cdot \left[\frac{1}{2} (\overline{T} - T_f) \operatorname{erfc} \left(-\frac{(\overline{T} - T_f)}{\sqrt{2\sigma_T^2}} \right) + \frac{\sigma_T}{\sqrt{2\pi}} \exp \left(-\frac{(\overline{T} - T_f)^2}{2\sigma_T^2} \right) \right] \left[\frac{1}{2} \operatorname{erfc} \left(\frac{1}{\sqrt{2}\sigma_S} \ln \left(-\frac{S_0}{\overline{S}} \right) \right) \right]$$

$$\left[\frac{1}{2}\operatorname{erfc}\left(\frac{1}{\sqrt{2}\sigma_S}\ln\left(-\frac{S_0}{\bar{S}}\right)\right)\right]$$

Percentage of snowcovered ground, F_s

Averaged melt rate over computational unit

A simple function of

- average temperature
- average snow depth
- distribution parameters

-Reverts to point scale when $\sigma_s = \sigma_T = 0$

Smoothing Effect of Upscaling

Testing

Testing

Testing

Sinusoidal temperature variation:

Data needs

- In order to effectively use this approach, information regarding property and state variable distributions is needed
 - Empirical, generalizable relationships for distribution parameters as a function of scale

 Understanding of evolution of distribution parameters over time

Extensions

 Similar upscaling methods can be applied to rates controlled by any forcing function or state variable with infinite limits

 Bounded variables require special attention (the math is a bit trickier)

Conclusions

- A physically-based argument has been provided for threshold smoothing
 - Simple analytical upscaling approaches may improve calibration, stability, and accuracy of numerical models
 - Purely numerical smoothing parameters (Kavetski and Kuczera, 2007)
 replaced with measurable physical quantities
- Challenges arise from assumptions about correlation, distributions, etc. at the sub-computational scale
 - Despite imperfections, even naïve upscaling appears to be an improvement over the standard approach
 - Benefits of smoothing remain regardless of upscaling accuracy
- The next step is try to apply these methods to more sophisticated process models (e.g., a full energy balance model), address parameter correlation, etc.