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INTRODUCTION

Currently, advances in hydrological sciences are basedetth data collection, computer
modeling, and analysis of these types of data in order to d@eantific conclusions about
physical processes and to perform what-if scenarios toragtientific prediction. How-
ever, as the modeling domains become larger, or the modautEs becomes smaller, ever
greater increases in computational effort are requiredvékas the finite limits on computer
processing power currently available, other issues, sscaund off errors for example, can
present themselves when solving equations numericaltiiofilgh current computing power
continues to slowly increase, much greater performanaesgain be obtained by taking ad
vantage of multi-core, multi-processor computer arclutexs. Completely utilizing modern
computational methods can help to further scientific adearent. In this work, Environ-
ment Canada’s model Modlisation Environmentale Commumnau{MEC)Surface and Hy-
drology (MESH) 1.3 [which is based on the Canadian Land Serfacheme (CLASS) and
WATFLOOD] was examined via code profiling to determine th@n&st portions of code.
Focus was given to determining whether the code could betadidgr parallelism targeting
shared-memory processors (SMP) and whether various cddarizgions could be made
to the code structure. These optimizations are importanfuttoire work that incorporates
computationally expensive physics into the model. Givaat MESH commonly requires
calibrate via multiple model runs, time lost to this stage hander the results if the model
iInformation cannot be applied in a timely fashion. By desnme@ the run time model users
can quickly iterate over calibration parameters, allowmngre time to be spent on the sci-
ence.

PROFILING

Code profiling was utilized to determine the time spent inhesagment of the MESH code
during a typical model run. MESH version 1.3 standalone @éodieased Summer/Fall 2009
was compiled with gfortran version 4.5.0 Ubuntu Linux 8.1@l @rofiled with Intel V-Tune
version 9.1. Third-level optimization was used (O3). Tharaple basin BWATER was
utilized with a total profiling run time of approximately 50imites on a CoreDuo laptop
running at 1.2GHz with 2Gb of RAM and a 5400rpm hard drive. sTlWas selected as a
worst case modelling platform.

Function Percentage of runtime
Main 18%
FLXSURFZ 15%
CLASSS 12%
CLASSG 8%
Total % of MESH 53%

TABLE 1: Profiling results as a percentage of runtime

MAIN is the model driver and entry point of MESH. It is responsiiolieloading configura-
tion files, reading forcing data, writing output data, andmmg the main computation loop
that iterates over the temporal model domain.

FLZSURFZ estimates a stability parameter, the Richardson Bulk nunaoel uses this to
estimate a corresponding Monin—Obukhov length that cpaeds to the stability parameter.
This i1s solved using the Newton—Raphson method.

CLASSS“scatters” the 2D arrays into 1D vectors. The rationale beliis is that it is faster
to traverse sequential memory than it is to access “2D” mgmor

CLASSG “gathers” the 1D vectors into 2D arrays.

PARALLELIZATION

MESH uses numerous do loops to iterate over the model donvéamy of these loops are
Iteration independent, meaning that any given iteration is not dependent upon &msr at-
eration. These types of iterations lend themselves verlyto@arallelism. An Application
Programming Interface (API) OpenMP was used to introducé® $islrallelism into MESH.
OpenMP was chosen because it facilitates fast and flexible gdMallelization into an exist-
INng code base and it is jointly defined by major hardware aftivaoe vendors such as Intel,
Microsoft, and AMD.
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CODE OPTIMIZATION

Given CLASSS and CLASSG were the two easiest to target bettles, these were ad-
dressed first. CLASSS was moved to above the main loop in daodprocess the input
files, and CLASSG was removed entirely. The few subroutihasrequired the 2D arrays
produced by CLASSG were rewritten to use the 1D vectors medly CLASSS. Basic
restructuring is outlined below. Due to the use of these 1€lors, the do-loops could then
be parallelized via the OpenMP API. In order to capture theedpup that was a result of
removing CLASSS and CLASSG as well as running on a multi-&ivdP computer, the

three popular Fortran compilers were compared: Intel Véttogdn, and g95. The g95 com-
piler does not support OpenMP, so g95 was only compared tottlex two compilers in

single-threaded mode.

Version Compiler Run Time Number of Threads
1.3.3 | ifort | 4m8.5s Auto Intel ifort speedup
1.3.3 | gfortran| 16m2.5s Auto best MESH 1.3.2 run time = 8.3min
1.3.3 ifort Am7.7s A best MESH 1.3.3 run time = 5.2min
1.3.3 | gfortran| 16m2.7s 4 speedup = szezog%g;zl;nenew % 100
1.3.3 Ifort 4m12.6s 3
1.3.3 | gfortran|16m28.0s 3 = 8322 4 100% =~ 37%
1.3.3 Ifort 4m22.5s 2
1.3.3 | gfortran| 17m7.2s 2 Intel ifort speedup (2threads)
1.3.3 ifort 5m12.9s 1 MESH 1.3.2 run time = 8.3min
1.3.3 | gfortran| 19m9.6s 1 MESH 1.3.3 run time = 4.4min
1.3.3| g95 | 19m3.8s 1 speedup = HIHI M 5 1))
1.3.2 ifort 8m20.2s 1
1.3.2 | gfortran | 17m34.6s 1 = 8344 4 100% ~ 47%
1.3.2 g95 22mO0s 1

TABLE 2: Code speedup and inter-compiler comparison
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FIGURE 1. (Left): Compiler performance comparison (Right):Speedas a function
of threads
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CONCLUSIONS AND FUTURE WORK

Preliminary results to consider the impact of parallelismrantime speed demonstratec
sufficient improvements to suggest that this would be aftrugpproach to apply to other
portions of the code Iin order to achieve even greater ineseasspeed. The performance
numbers show that the code is still dominated by the ser@lmses. It was also observed
that different compilers produced different results, vmhiere greater than what would have
been expected due to round off error. CLASS 3.4 revised wed msisolation from MESH

and run for a year with the example data set. Intel Visualrkartgfortran, and g95 were

compared via the relative differen(?épm”}fgjgln_kmw”. This is shown in Figure 2 and
the variables presented are the three solil layer tempertaveraged to daily values. Fur
ther investigation into these instabilities is requiregbtoperly quantify their effects on the

output.
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FIGURE 2: Relative difference between g95 and gfortran compilersmared to IVF

Instabilities can be mitigated (sometimes fully) by movioga greater floating point pre-
cision where the accumulated round off error can have lesnodffect on the unstable
algorithms. Figure 3 shows a comparison between double iagte recision data types
showing that the instabllities are partially mitigated.
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FIGURE 3: Errors as a result of double precision and single pratisio



